试题
题目:
如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,若AB=CD,可以得到BD平分EF,为什么?说明理由.
答案
解:BD平分EF,理由是:
证法一、连接BE、DF.
∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°,DE∥BF,
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
在Rt△ABF和Rt△CDE中
AB=CD
AF=CE
,
∴Rt△ABF≌Rt△CDE,
∴DE=BF,
∵DE∥BF,
∴四边形DEBF是平行四边形,
∴BD平分EF;
证法二、∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°,DE∥BF,
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
在Rt△ABF和Rt△CDE中
AB=CD
AF=CE
,
∴Rt△ABF≌Rt△CDE,
∴DE=BF,
∵在△BFG和△DEG中
∠BFG=∠DEG
∠BGF=∠DGE
BF=DE
,
∴△BFG≌△DEG(AAS),
∴EG=FG,
即BD平分EF.
解:BD平分EF,理由是:
证法一、连接BE、DF.
∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°,DE∥BF,
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
在Rt△ABF和Rt△CDE中
AB=CD
AF=CE
,
∴Rt△ABF≌Rt△CDE,
∴DE=BF,
∵DE∥BF,
∴四边形DEBF是平行四边形,
∴BD平分EF;
证法二、∵DE⊥AC,BF⊥AC,
∴∠AFB=∠CED=90°,DE∥BF,
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
在Rt△ABF和Rt△CDE中
AB=CD
AF=CE
,
∴Rt△ABF≌Rt△CDE,
∴DE=BF,
∵在△BFG和△DEG中
∠BFG=∠DEG
∠BGF=∠DGE
BF=DE
,
∴△BFG≌△DEG(AAS),
∴EG=FG,
即BD平分EF.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;垂线;直角三角形全等的判定;平行四边形的判定与性质.
求出∠AFB=∠CED=90°,DE∥BF,推出AF=CE,连接BE、DF,根据HL证Rt△ABF≌Rt△CDE,推出DE=BF,得出平行四边形DEBF,根据平行四边形的性质推出即可.
本题考查了平行四边形的性质和判定,垂线,全等三角形的性质和判定等知识点的运用,关键是得出平行四边形DEBF,题目比较好,难度适中.
证明题.
找相似题
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )
(2010·温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
(2007·贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有( )
(2003·烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( )
在下列条件中,不能判定两个直角三角形全等的是( )