试题
题目:
如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.
答案
证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,
∴DE=DF;
∵DE⊥AB于E,DF⊥AC于F.
∴在Rt△DBE和Rt△DCF中
DE=DF
DB=DC
∴Rt△DBE≌Rt△DCF(HL);
∴EB=FC.
证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,
∴DE=DF;
∵DE⊥AB于E,DF⊥AC于F.
∴在Rt△DBE和Rt△DCF中
DE=DF
DB=DC
∴Rt△DBE≌Rt△DCF(HL);
∴EB=FC.
考点梳理
考点
分析
点评
专题
直角三角形全等的判定;全等三角形的性质;角平分线的性质.
先根据角平分线上的点到两边的距离相等证得DE=DF,再利用HL判定,Rt△DBE≌Rt△DCF,从而得到EB=FC.
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、HL(在直角三角形中).
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
证明题.
找相似题
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )
(2010·温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
(2007·贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有( )
(2003·烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( )
在下列条件中,不能判定两个直角三角形全等的是( )