试题
题目:
(2009·朝阳区二模)已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E且AB=DE,连接AC、DF.
求证:∠A=∠D.
答案
证明:∵BF=CE,
∴BF+FC=CE+FC.即BC=EF.
∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°.
在△ABC与△DEF中,
BC=EF
∠B=∠E
AB=DE
,
∴△ABC≌△DEF(SAS),
∴∠A=∠D.
证明:∵BF=CE,
∴BF+FC=CE+FC.即BC=EF.
∵AB⊥BE,DE⊥BE,
∴∠B=∠E=90°.
在△ABC与△DEF中,
BC=EF
∠B=∠E
AB=DE
,
∴△ABC≌△DEF(SAS),
∴∠A=∠D.
考点梳理
考点
分析
点评
专题
直角三角形全等的判定;全等三角形的性质.
根据已知利用SAS判定△ABC≌△DEF,全等三角形的对应角相等从而得到∠A=∠D.
此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有AAS,SAS,SSS,HL等.
证明题.
找相似题
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )
(2010·温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
(2007·贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有( )
(2003·烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( )
在下列条件中,不能判定两个直角三角形全等的是( )