试题
题目:
如图,将直角三角形ABC的直角顶点置于直线l上,且过A、B两点分别作直线l的垂线,垂足分别为D、E,已知BC=5,AD=4,BE=3,求证:AC=CB.
答案
证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,
∴∠CAD=∠BCE.
又∠ADC=∠CEB=90°,
BE=3,BC=5由勾股定理可得CE=4,
AD=4,
∴AD=CE.
∴△ACD≌△CBE(ASA).
∴AC=CB(全等三角形对应边相等).
证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,
∴∠CAD=∠BCE.
又∠ADC=∠CEB=90°,
BE=3,BC=5由勾股定理可得CE=4,
AD=4,
∴AD=CE.
∴△ACD≌△CBE(ASA).
∴AC=CB(全等三角形对应边相等).
考点梳理
考点
分析
点评
专题
勾股定理;直角三角形全等的判定.
此题充分发挥垂直的作用,可以得到∠CAD=∠BCE,同时利用垂直构造直角三角形,利用勾股定理计算证明线段相等,最后通过证明三角形全等解决问题.
此题作用考查了全等三角形的性质与判定,直角三角形的性质,勾股定理的计算等.
证明题.
找相似题
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )
(2010·温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
(2007·贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有( )
(2003·烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( )
在下列条件中,不能判定两个直角三角形全等的是( )