试题
题目:
(2005·海南)如图所示,正方形ABCD的边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG的延长线于H.
(1)求证:①△BCG≌△DCE;②BH⊥DE.
(2)试问当点G运动到什么位置时,BH垂直平分DE?请说明理由.
答案
(1)证明:在正方形ABCD中,∠BCG=90°,BC=CD
在正方形GCEF中,∠DCE=90°,CG=CE
在△BCG和△DCE中,
BC=DC
∠BCG=∠DCE
CG=CE
∴△BCG≌△DCE(SAS)
∴∠1=∠2∵∠2+∠DEC=90°
∴∠1+∠DEC=90°
∴∠BHD=90°
∴BH⊥DE;
(2)解:当GC=
2
-1时,BH垂直平分DE.理由如下:
连接EG
∵BH垂直平分DE
∴EG=DG
设CG=x
∵CE=CG,∠DCE=90°
∴EG=
2
x
,DG=
2
x
∵DG+CG=CD
x+
2
x=1解得x=
2
-1
∴GC=
2
-1时,BH垂直平分DE.
(1)证明:在正方形ABCD中,∠BCG=90°,BC=CD
在正方形GCEF中,∠DCE=90°,CG=CE
在△BCG和△DCE中,
BC=DC
∠BCG=∠DCE
CG=CE
∴△BCG≌△DCE(SAS)
∴∠1=∠2∵∠2+∠DEC=90°
∴∠1+∠DEC=90°
∴∠BHD=90°
∴BH⊥DE;
(2)解:当GC=
2
-1时,BH垂直平分DE.理由如下:
连接EG
∵BH垂直平分DE
∴EG=DG
设CG=x
∵CE=CG,∠DCE=90°
∴EG=
2
x
,DG=
2
x
∵DG+CG=CD
x+
2
x=1解得x=
2
-1
∴GC=
2
-1时,BH垂直平分DE.
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;直角三角形全等的判定;正方形的性质.
(1)根据正方形的边的性质和直角可通过SAS判定△BCG≌△DCE,从而利用全等的性质得到∠BHD=90°即BH⊥DE;
(2)解题关键是利用垂直平分线的性质得出EG=DG,从而找到EG=
2
x
,DG=
2
x
,DG+CG=CD.列方程求解即可.
此题主要考查正方形的性质,全等三角形的判定和线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.特殊图形的特殊性质要熟练掌握.
压轴题;动点型.
找相似题
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )
(2010·温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
(2007·贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有( )
(2003·烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( )
在下列条件中,不能判定两个直角三角形全等的是( )