试题

题目:
青果学院(2009·怀化)如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.
求证:
(1)PE=PF;
(2)点P在∠BAC的角平分线上.
答案
青果学院证明:(1)如图,连接AP并延长,
∵PE⊥AB,PF⊥AC
∴∠AEP=∠AFP=90°
又AE=AF,AP=AP,
∵在Rt△AFP和Rt△AEP中
AP=AP
AE=AF

∴Rt△AEP≌Rt△AFP(HL),
∴PE=PF.

(2)∵Rt△AEP≌Rt△AFP,
∴∠EAP=∠FAP,
∴AP是∠BAC的角平分线,
故点P在∠BAC的角平分线上.
青果学院证明:(1)如图,连接AP并延长,
∵PE⊥AB,PF⊥AC
∴∠AEP=∠AFP=90°
又AE=AF,AP=AP,
∵在Rt△AFP和Rt△AEP中
AP=AP
AE=AF

∴Rt△AEP≌Rt△AFP(HL),
∴PE=PF.

(2)∵Rt△AEP≌Rt△AFP,
∴∠EAP=∠FAP,
∴AP是∠BAC的角平分线,
故点P在∠BAC的角平分线上.
考点梳理
角平分线的性质;直角三角形全等的判定.
(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;
(2)利用(1)中的全等,可得出∠FAP=∠EAP,那么点P在∠BAC的平分线上.
本题考查了三角形全等的判定和性质,以及角平分线的有关知识,作射线AP是解答本题的关键.
证明题.
找相似题