试题
题目:
对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等;以上能断定两直角三角形全等的有( )
A.1个
B.2个
C.3个
D.4个
答案
D
解:①两条直角边对应相等,根据“SAS”,正确;
②斜边和一锐角对应相等,根据“AAS”,正确;
③斜边和一直角边对应相等,根据“HL”,正确;
④直角边和一锐角对应相等,根据“ASA”或“AAS”,正确;
故选D.
考点梳理
考点
分析
点评
直角三角形全等的判定.
根据直角三角形的判定定理进行选择即可.
本题考查了直角三角形的判定定理,除HL外,一般三角形的全等有四种方法,做题时要结合已知条件与全等的判定方法逐一验证.
找相似题
(2012·自贡)如图,矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,连接BD、DF,则图中全等的直角三角形共有( )
(2010·温州)如图,AC、BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于E,则图中与△ABC全等的三角形共有( )
(2007·贵港)如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,若CD⊥AB,DE⊥BC垂足分别是D、E.则图中全等的三角形共有( )
(2003·烟台)如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是( )
在下列条件中,不能判定两个直角三角形全等的是( )