题目:

已知,BC∥OA,∠B=∠A=100°,试回答下列问题:
(1)如图1所示,求证:OB∥AC;
(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;
(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;
(4)附加题:在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于
60°
60°
.(在横线上填上答案即可).
答案
60°
解:(1)∵BC∥OA,
∴∠B+∠O=180°;
∵∠A=∠B,
∴∠A+∠O=180°,
∴OB∥AC.(3分)
(2)∵∠A=∠B=100°,
由(1)得∠BOA=180°-∠B=80°;
∵∠FOC=∠AOC,并且OE平分∠BOF,
∴∠EOF=
∠BOF∠FOC=
∠FOA,
∴∠EOC=∠EOF+∠FOC=
(∠BOF+∠FOA)=
∠BOA=40°.(3分)
(3)结论:∠OCB:∠OFB的值不发生变化.理由为:
∵BC∥OA,
∴∠FCO=∠COA,
又∵∠FOC=∠AOC,
∴∠FOC=∠FCO,
∴∠OFB=∠FOC+∠FCO=2∠OCB,
∴∠OCB:∠OFB=1:2.(4分)
(4)由(1)知:OB∥AC,∴∠OCA=∠BOC,
由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,
∴∠OCA=∠BOC=2α+β
∠OEB=∠EOC+∠ECO=α+β+β=α+2β
∵∠OEB=∠OCA
∴2α+β=α+2β
∴α=β
∵∠AOB=80°,∴α=β=20°
∴∠OCA=2α+β=40°+20°=60°.
故答案是:60°.(3分)