试题
题目:
如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,
其中正确的结论是
①③④
①③④
.
答案
①③④
解:∵BE平分∠ABC,
∴∠ABF=∠CBF=
1
2
∠ABC,
∵AG∥BC,
∴∠BAG=∠ABC,
∴∠BAG=2∠ABF,
故①正确,
∵BG⊥AG,
∴∠GAB+∠ABG=90°,
∴∠GBA+∠ABC=90°,
∵AB⊥AC,
∴∠ABC+∠ACB=90°,
∴∠ABG=∠ACB,
故③正确,
∵CD、BE分别是△ABC的角平分线,
∴∠EBC=
1
2
∠ABC,∠DCB=
1
2
∠ACB,
∵∠ABC+∠ACB=90°,
∴∠CFB=180°-(180°-90°)÷2=135°,
故④正确.
故答案为:①③④.
考点梳理
考点
分析
点评
三角形内角和定理;平行线的性质.
根据已知条件AG∥BC,可得到∠BAG=∠ABC,再根据BE平分∠ABC,可判断出①正确;根据BG⊥AG,AB⊥AC,可得到∠GAB+∠ABG=90°,∠ABC+∠ACB=90°,再根据∠BAG=∠ABC,可判断出③正确;根据CD、BE分别是△ABC的角平分线,得到∠FBC+∠FCB=
1
2
(∠ABC+∠ACB),再根据三角形内角和定理得到答案.
此题主要考查了三角形内角和定理,角平分线的性质,垂直,关键是理清角之间的关系.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )