试题
题目:
如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°,则∠BFD的度数为
110
110
°.
答案
110
解:
过点E作EG∥AB,
则可得∠ABE+∠BEG=180°,∠GED+∠EDC=180°,
∴∠ABE+∠CDE+∠E=360°;
又∵∠E=140°,
∴∠ABE+∠CDE=220°,
∴∠FBE+∠EDF=
1
2
(∠ABE+∠CDE)=110°;
∵四边形的BFDE的内角和为360°,
∴∠BFD=110°,
故填110.
考点梳理
考点
分析
点评
专题
平行线的性质;多边形内角与外角.
根据平行线的性质可得∠ABE+∠CDE+∠E=360°,∠E=140°由此得出∠FBE+∠EDF的值,再根据四边形的内角和为360°可得出∠BFD的度数.
本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补.
计算题.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )