试题
题目:
(2011·本溪)如图:AB∥CD,直线MN分别交AB、CD于点E、F,EG平分∠AEF.EG⊥FG于点G,若∠BEM=50°,则∠CFG=
65°
65°
.
答案
65°
解:∵AB∥CD,
∴∠AEF+∠CFE=180°,
∵∠AEF=∠BEM=50°,
∴∠CFE=130°,
∵EG平分∠AEF,
∴∠GEF=
1
2
∠AEF=25°,
∵EG⊥FG,
∴∠EGF=90°,
∴∠GFE=90°-∠GEF=65°,
∴∠CFG=∠CEF-∠GFE=65°.
故答案为:65°.
考点梳理
考点
分析
点评
平行线的性质.
首先由AB∥CD,根据两直线平行,同旁内角互补,即可求得∠CFE的度数,又由内角和定理,求得∠GFE的度数,则可求得∠CFG的度数.
此题考查了平行线的性质,垂直的定义以及角平分线的性质.注意两直线平行,同旁内角互补.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )