试题
题目:
如图,已知AB∥CD,AE,CE分别平分∠BAC,∠ACD.试说明AE⊥CE.
答案
证明:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵AE平分∠BAC,CE平分∠ACD,
∴∠EAC=
1
2
∠BAC,∠ACE=
1
2
∠ACD,
∴∠EAC+∠ACE=
1
2
(∠BAC+∠ACD)=90°,
∴∠AEC=180°-(∠EAC+∠ACE)=90°,
∴AE⊥CE.
证明:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵AE平分∠BAC,CE平分∠ACD,
∴∠EAC=
1
2
∠BAC,∠ACE=
1
2
∠ACD,
∴∠EAC+∠ACE=
1
2
(∠BAC+∠ACD)=90°,
∴∠AEC=180°-(∠EAC+∠ACE)=90°,
∴AE⊥CE.
考点梳理
考点
分析
点评
平行线的性质.
根据两直线平行,同旁内角互补可得∠BAC+∠ACD=180°,再根据角平分线的定义可得∠EAC=
1
2
∠BAC,∠ACE=
1
2
∠ACD,然后求出∠EAC+∠ACE=
1
2
(∠BAC+∠ACD)=90°,然后求出∠AEC=90°,再根据垂直的定义解答.
本题考查了两直线平行,同旁内角互补的性质,角平分线的定义,垂直的定义,熟记性质是解题的关键.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )