试题
题目:
已知,直线AB∥CD,E为AB、CD间的一点,连接EA、EC.
(1)如图①,若∠A=20°,∠C=40°,则∠AEC=
60
60
°.
(2)如图②,若∠A=x°,∠C=y°,则∠AEC=
360-x-y
360-x-y
°.
(3)如图③,若∠A=α,∠C=β,则α,β与∠AEC之间有何等量关系.并简要说明.
答案
60
360-x-y
解:如图,过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF.
(1)∵∠A=20°,∠C=40°,
∴∠1=∠A=20°,∠2=∠C=40°,
∴∠AEC=∠1+∠2=60°;
(2)∴∠1+∠A=180°,∠2+∠C=180°,
∵∠A=x°,∠C=y°,
∴∠1+∠2+x°+y°=360°,
∴∠AEC=360°-x°-y°;
(3)∠A=α,∠C=β,
∴∠1+∠A=180°,∠2=∠C=β,
∴∠1=180°-∠A=180°-α,
∴∠AEC=∠1+∠2=180°-α+β.
考点梳理
考点
分析
点评
专题
平行线的性质.
首先都需要过点E作EF∥AB,由AB∥CD,可得AB∥CD∥EF.
(1)根据两直线平行,内错角相等,即可求得∠AEC的度数;
(2)根据两直线平行,同旁内角互补,即可求得∠AEC的度数;
(3)根据两直线平行,内错角相等;两直线平行,同旁内角互补,即可求得∠AEC的度数.
此题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.解此题的关键是准确作出辅助线:作平行线,这是此类题目的常见解法.
计算题;探究型.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )