试题
题目:
如图,已知AB∥CD,AE∥CF,求证:∠BAE=∠DCF.
答案
证明:∵AB∥CD,
∴∠BAC=∠DCA.(两直线平行,内错角相等)
∵AE∥CF,
∴∠EAC=∠FCA.(两直线平行,内错角相等)
∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,
∴∠BAE=∠DCF.
证明:∵AB∥CD,
∴∠BAC=∠DCA.(两直线平行,内错角相等)
∵AE∥CF,
∴∠EAC=∠FCA.(两直线平行,内错角相等)
∵∠BAC=∠BAE+∠EAC,∠DCA=∠DCF+∠FCA,
∴∠BAE=∠DCF.
考点梳理
考点
分析
点评
专题
平行线的性质.
根据两直线平行,内错角相等的性质以及角的和差关系可证明.
重点考查了两直线平行,内错角相等的这一性质.
证明题.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )