试题
题目:
如图,AB∥EF,AC⊥AB,AB⊥BD,∠E=∠F=120°,则∠DBF+∠CAE等于( )
A.240°
B.210°
C.180°
D.无法确定
答案
C
解:∵AB∥EF,∠E=∠F=120°,
∴∠EAB=∠FBA=180°-120°=60°,
∵AC⊥AB,AB⊥BD,
∴∠CAB=∠ABD=90°,
∴∠DBF+∠CAE=∠CAB+∠EAB+∠DBF=∠CAB+∠ABF+∠DBF=∠CAB+∠ABD=90°+90°=180°.
故选C.
考点梳理
考点
分析
点评
平行线的性质.
由AB∥EF,∠E=∠F=120°,利用平行线的性质,可求得∠EAB=∠FBA,又由AC⊥AB,AB⊥BD,即可求得∠DBF+∠CAE=∠CAB+∠ABD=90°+90°=180°.
此题考查了平行线的性质以及垂线的定义.此题难度不大,注意掌握数形结合思想的应用.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )