试题
题目:
已知AB∥CD∥EF,若∠ABE=32°,∠DCE=160°,求∠BEC.
答案
解:∵AB∥EF,
∴∠BEF=∠ABE=32°,
∵CD∥EF,
∴∠DCE+∠CEF=180°,
∵∠DCE=160°,
∴∠CEF=20°,
∴∠BEC=∠BEF-∠CEF=32°-20°=12°.
解:∵AB∥EF,
∴∠BEF=∠ABE=32°,
∵CD∥EF,
∴∠DCE+∠CEF=180°,
∵∠DCE=160°,
∴∠CEF=20°,
∴∠BEC=∠BEF-∠CEF=32°-20°=12°.
考点梳理
考点
分析
点评
平行线的性质;三角形的外角性质.
首先由AB∥CD∥EF,根据两直线平行,内错角相等,同旁内角互补,即可求得∠BEF与∠CEF的度数,然后由∠BEC=∠BEF-∠CEF,即可求得答案.
此题考查了平行线的性质.注意掌握两直线平行,内错角相等,同旁内角互补是解此题的关键.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )