试题
题目:
如图,AB∥CD,BF平分∠ABE,且BF∥DE,求证:∠ABE=2∠D.
答案
证明:如图,延长DE交AB的延长线于G,
∵AB∥CD,
∴∠D=∠G,
∵BF∥DE,
∴∠G=∠ABF,
∴∠D=∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF=2∠D,
即∠ABE=2∠D.
证明:如图,延长DE交AB的延长线于G,
∵AB∥CD,
∴∠D=∠G,
∵BF∥DE,
∴∠G=∠ABF,
∴∠D=∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF=2∠D,
即∠ABE=2∠D.
考点梳理
考点
分析
点评
专题
平行线的性质.
延长DE交AB的延长线于G,根据两直线平行,内错角相等可得∠D=∠G,再根据两直线平行,同位角相等可得∠G=∠ABF,然后根据角平分线的定义解答.
本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.
证明题.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )