试题
题目:
如图,AB∥CD,∠1=45°,∠D=∠C,求∠D、∠C、∠B的度数.
答案
解:∠D=∠C=45°,∠B=135°.
理由:∵AB∥CD,
∴∠D=∠1=45°(两直线平行,同位角相等)
∴∠B+∠C=180°(两直线平行,同旁内角互补)
∵∠D=∠C=45°,
∴∠B=180°-∠C=180°-45°=135°.
解:∠D=∠C=45°,∠B=135°.
理由:∵AB∥CD,
∴∠D=∠1=45°(两直线平行,同位角相等)
∴∠B+∠C=180°(两直线平行,同旁内角互补)
∵∠D=∠C=45°,
∴∠B=180°-∠C=180°-45°=135°.
考点梳理
考点
分析
点评
专题
平行线的性质.
根据两直线平行,同位角相等、同旁内角互补这两条性质解题.
本题重点考查平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.
计算题.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )