试题
题目:
如何证明三角形的内角和为180°?
答案
证明:如图所示,在△ABC中,过A引EF∥BC,
∵EF∥BC,
∴∠B=∠1,∠C=∠2(内错角相等).
∵∠1+∠BAC+∠2=180°,
∴∠A+∠B+∠C=180°.
即三角形的内角和为180°.
证明:如图所示,在△ABC中,过A引EF∥BC,
∵EF∥BC,
∴∠B=∠1,∠C=∠2(内错角相等).
∵∠1+∠BAC+∠2=180°,
∴∠A+∠B+∠C=180°.
即三角形的内角和为180°.
考点梳理
考点
分析
点评
专题
三角形内角和定理;平行线的性质.
因为平角为180°,若能运用平行线的性质,将三角形三个内角集中到同一顶点,并得到一个平角,问题即可解决.
此题主要考查平行线的性质的运用及三角形内角和定理的掌握.
证明题.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·宁德)如图,DE∥AC,∠D=60°.下列结论正确的是( )
(2013·乐山)如图,已知直线a∥b,∠1=131°.则∠2等于( )