试题
题目:
平面内四条直线共有三个交点,则这四条直线中最多有
三
三
条平行线.
答案
三
解:若四条直线相互平行,则没有交点;
若四条直线中有三条直线相互平行,则此时恰好有三个交点;
若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;
若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;
若四条直线中没有平行线,则此时的交点是一个或四个或六个.
综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.
故答案是:三.
考点梳理
考点
分析
点评
平行线.
根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.
本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.
找相似题
(2012·奉贤区二模)已知长方体ABCD-EFGH如图所示,那么下列直线中与直线AB不平行也不垂直的直线是( )
(2010·浦东新区二模)在长方体ABCD-EFGH中,与面ABCD平行的棱共有( )
下列说法错误的有几个( )
(1)不相交的两直线一定是平行线;
(2)点到直线的垂线段就是点到直线的距离;
(3)两点之间直线最短;
(4)过一点有且只有一条直线与已知直线垂直.
下列说法,其中属于不正确说法的是( )
下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有( )