试题
题目:
如图,AC⊥BC,CD⊥AB,∠A的余角有
2
2
个.
答案
2
解:∵AC⊥BC,CD⊥AB,
∴∠ACB=∠ADC=∠BDC=90°,
∴∠A+∠B=90°,∠A+∠ACD=90°,
即∠A的余角是∠B和∠ACD,共2个,
故答案为:2.
考点梳理
考点
分析
点评
余角和补角.
根据垂直定义得出∠ACB=∠ADC=∠BDC=90°,根据三角形内角和定理求出∠A+∠B=90°,∠A+∠ACD=90°,即可得出答案.
本题考查了三角形内角和定理,余角,补角的应用,关键是求出∠A+∠B=90°,∠A+∠ACD=90°.
找相似题
(2013·重庆)已知∠A=65°,则∠A的补角等于( )
(2013·厦门)∠A=60°,则∠A的补角是( )
(2008·西宁)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③
1
2
(∠α+∠β);④
1
2
(∠α-∠β).正确的有( )
(2008·湖州)已知∠α=35°,则∠α的余角的度数是( )
(2006·南通)已知∠α=42°,则∠α的补角等于( )