试题
题目:
如图,已知A、O、E三点在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD与∠DOE之间有怎样的关系?说明理由.
答案
解:∠COD=∠DOE.
理由如下:
∵OB平分∠AOC,
∴∠AOB=∠BOC,
又∵∠AOB+∠DOE=90°,
∴∠BOC+∠COD=∠AOE-(∠AOB+∠DOE)=180°-90°=90°,
∴∠COD=∠DOE.
解:∠COD=∠DOE.
理由如下:
∵OB平分∠AOC,
∴∠AOB=∠BOC,
又∵∠AOB+∠DOE=90°,
∴∠BOC+∠COD=∠AOE-(∠AOB+∠DOE)=180°-90°=90°,
∴∠COD=∠DOE.
考点梳理
考点
分析
点评
专题
余角和补角;角平分线的定义.
利用角平分线的性质,可知∠AOB=∠BOC,而∠AOB+∠DOE=90°,由平角的定义,可知∠BOC+∠COD=90°,根据等角的余角相等,可知∠COD与∠DOE相等.
本题主要考查了角平分线、平角的定义及余角的性质.比较简单.
推理填空题.
找相似题
(2013·重庆)已知∠A=65°,则∠A的补角等于( )
(2013·厦门)∠A=60°,则∠A的补角是( )
(2008·西宁)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③
1
2
(∠α+∠β);④
1
2
(∠α-∠β).正确的有( )
(2008·湖州)已知∠α=35°,则∠α的余角的度数是( )
(2006·南通)已知∠α=42°,则∠α的补角等于( )