试题
题目:
如图,点O在直线AB上,射线CO与AB交于点O,OE、OD分别是∠AOC、∠BOC的角平分线,求∠DOE的度数,并写出∠COD的余角.
答案
解:①∵∠AOC+∠BOC=180°,
又∵OE平分∠AOC,OD平分∠BOC,
∴2∠EOC+2∠DOC=180°,
∴∠DOE=90°.
②∠COD的余角有:∠AOE∠COE.
解:①∵∠AOC+∠BOC=180°,
又∵OE平分∠AOC,OD平分∠BOC,
∴2∠EOC+2∠DOC=180°,
∴∠DOE=90°.
②∠COD的余角有:∠AOE∠COE.
考点梳理
考点
分析
点评
角的计算;角平分线的定义;余角和补角.
本题比较多的条件是角平分线,OD和OE分别是∠AOC,∠BOC的角平分线,则2∠DOC+2∠EOC=180°,从而可以求解,根据余角的定义:和为90°的两个角叫互为余角,可找出∠COD的余角.
此题主要考查了角平分线的性质,余角的定义,关键是根据角平分线定义得到角之间的关系.
找相似题
(2013·重庆)已知∠A=65°,则∠A的补角等于( )
(2013·厦门)∠A=60°,则∠A的补角是( )
(2008·西宁)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③
1
2
(∠α+∠β);④
1
2
(∠α-∠β).正确的有( )
(2008·湖州)已知∠α=35°,则∠α的余角的度数是( )
(2006·南通)已知∠α=42°,则∠α的补角等于( )