试题
题目:
如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.
答案
解:∵∠AOC=75°,∠BOC=30°,
∴∠AOB=∠AOC-∠BOC=75°-30°=45°,
又∵∠BOD=75°,
∴∠AOD=∠AOB+∠BOD=45°+75°=120°.
故答案为120°.
解:∵∠AOC=75°,∠BOC=30°,
∴∠AOB=∠AOC-∠BOC=75°-30°=45°,
又∵∠BOD=75°,
∴∠AOD=∠AOB+∠BOD=45°+75°=120°.
故答案为120°.
考点梳理
考点
分析
点评
专题
角的计算.
根据∠AOC=∠BOD=75°,∠BOC=30°,利用角的和差关系先求出∠AOB的度数,再求∠AOD.
此题主要考查了角相互间的和差关系,比较简单.
计算题.
找相似题
(2005·三明)一副三角板不能拼出的角的度数是(拼接要求:既不重叠又不留空隙)( )
已知射线OC是∠AOB的一条三等分线,若∠AOB=60°,则∠AOC为( )
l图,∠2O它和∠BO2都是直角,l果∠2OB=135°,则∠2O它的度数是( )
如图,在△A十E中,点C,D在十E边中,且AD平分∠CAE,∠t=
t
4
∠CAE,∠十AD=48°,则∠2=( )
用一副三角尺不能画出来的角的度数是( )