试题
题目:
如图,已知∠AOB=
1
2
∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.
答案
解:设∠AOB=x°,由题意3x+3x+2x+x=360,解之可得x=40,即∠AOB=40°,
又因为∠COD=3∠AOB,即∠COD=120°.
故答案为40°、120°.
解:设∠AOB=x°,由题意3x+3x+2x+x=360,解之可得x=40,即∠AOB=40°,
又因为∠COD=3∠AOB,即∠COD=120°.
故答案为40°、120°.
考点梳理
考点
分析
点评
专题
角的计算.
根据平面各角和为360°,又因为各角与∠AOB有关系,用∠AOB表示其余角,设∠AOB=x°故有3x+3x+2x+x=360,解之可得X,又因为∠COD=3∠AOB,即可得解.
此题简单的考查了周角为360°的知识点,要求学生灵活掌握运用.
计算题.
找相似题
(2005·三明)一副三角板不能拼出的角的度数是(拼接要求:既不重叠又不留空隙)( )
已知射线OC是∠AOB的一条三等分线,若∠AOB=60°,则∠AOC为( )
l图,∠2O它和∠BO2都是直角,l果∠2OB=135°,则∠2O它的度数是( )
如图,在△A十E中,点C,D在十E边中,且AD平分∠CAE,∠t=
t
4
∠CAE,∠十AD=48°,则∠2=( )
用一副三角尺不能画出来的角的度数是( )