答案
解:(1)∵∠AOB是直角,OD平∠BOC,OE平分∠AOC.
∴∠COD=
∠BOC,∠COE=
∠AOC,
∴∠COD+∠COE=
(∠BOC+∠AOC),
即∠DOE=∠AOB=
×90°=45°;
(2)当OC在∠A0B内绕点O转动时,∠DOE的值不会改变.
∵由(1)知∠DOE=
∠AOB,而∠AOB的度数不变,则∠DOE就不变.
解:(1)∵∠AOB是直角,OD平∠BOC,OE平分∠AOC.
∴∠COD=
∠BOC,∠COE=
∠AOC,
∴∠COD+∠COE=
(∠BOC+∠AOC),
即∠DOE=∠AOB=
×90°=45°;
(2)当OC在∠A0B内绕点O转动时,∠DOE的值不会改变.
∵由(1)知∠DOE=
∠AOB,而∠AOB的度数不变,则∠DOE就不变.