试题
题目:
如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.
(1)如图1,若CF=2,则BE=
4
4
,若CF=m,BE与CF的数量关系是
(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.
(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出
10DF
CF
值;若不存在,请说明理由.
答案
4
解:(1)∵CE=6,CF=2,
∴EF=CE-CF=6-2=4,
∵F为AE的中点,
∴AE=2EF=2×4=8,
∴BE=AB-AE=12-8=4,
若CF=m,
则BE=2m,
BE=2CF;
(2)(1)中BE=2CF仍然成立.
理由如下:∵F为AE的中点,
∴AE=2EF,
∴BE=AB-AE,
=12-2EF,
=12-2(CE-CF),
=12-2(6-CF),
=2CF;
(3)存在,DF=3.
理由如下:设DE=x,则DF=3x,
∴EF=2x,CF=6-x,BE=x+7,
由(2)知:BE=2CF,
∴x+7=2(6-x),
解得,x=1,
∴DF=3,CF=5,
∴
10DF
CF
=6.
考点梳理
考点
分析
点评
两点间的距离;一元一次方程的应用.
(1)先根据EF=CE-CF求出EF,再根据中点的定义求出AE,然后根据BE=AB-AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;
(2)根据中点定义可得AE=2EF,再根据BE=AB-AE整理即可得解;
(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.
本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE的表示是解题的关键.
找相似题
(2013·台湾)数轴上A、B、C三点所表示的数分别为a、b、c,且C在AB上.若|a|=|b|,AC:CB=1:3,则下列b、c的关系式,何者正确?( )
有四种说法:①如果AB=BC,那么B是线段AC的中点;②连接两点间的线段叫两点间的距离;③射线AB和射线BA是两条不同的射线;④直线AB与直线BA是同一条直线.则正确说法的个数是( )
已知线段AB,延长AB到C,使BC=2AB,M、N分别是AB、BC的中点,则( )
A,B,C三点在同一条直线上,且AB=6,BC=5,则AC为( )
如图,C为射线AB上一点,AB=30,AC比BC的
1
4
多5,P、Q两点分别从A、B两点同时出发,分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的
中点,N为QM的中点,以下结论:
①BC=2AC; ②AB=4NQ;
③当PB=
1
2
BQ时,t=12
其中正确结论的个数是( )