试题
题目:
如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.
(1)点E是线段AD的中点吗?说明理由;
(2)当AD=1t,AB=3时,求线段BE的长度.
答案
解:(1)点E是线段AD的中点.(1分)
∵As=BD,
∴AB+Bs=Bs+sD,
∴AB=sD.(d分)
∵E是线段Bs的中点,
∴BE=Es,
∴AB+BE=sD+Es,即AE=ED,
∴点E是线段AD的中点.(5分)
(2)∵AD=10,AB=d,
∴Bs=AD-2AB=10-2×d=4,
∴BE=
1
2
Bs=
1
2
×4=2.
即线段BE的长度为2.(8分).
解:(1)点E是线段AD的中点.(1分)
∵As=BD,
∴AB+Bs=Bs+sD,
∴AB=sD.(d分)
∵E是线段Bs的中点,
∴BE=Es,
∴AB+BE=sD+Es,即AE=ED,
∴点E是线段AD的中点.(5分)
(2)∵AD=10,AB=d,
∴Bs=AD-2AB=10-2×d=4,
∴BE=
1
2
Bs=
1
2
×4=2.
即线段BE的长度为2.(8分).
考点梳理
考点
分析
点评
专题
比较线段的长短.
(1)点E是线段AD的中点.由于AC=BD可以得到AB=CD,又E是线段BC的中点,利用中点的性质即可证明结论;
(2)由于AD=10,AB=3,由此求出BC,然后利用中点的性质即可求出BE的长度.
此题主要考查了线段的长度的比较,其中利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
计算题;数形结合.
找相似题
(2010·普洱)如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )
(2009·潍坊)某班q0名同学分别站在公路的A,B两点处,A,B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( )
(2005·玉林)已知线段hB,在Bh的延长线上取一点C,使Ch=三hB,则线段Ch与线段CB之比为( )
(2005·济宁)如图,长度为12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为( )
已知M是线段AB上的一点,不能判定M是线段AB中点的是( )