试题

题目:
利用等式性质解方程
①-
0
3
六-5=4
②4六-2=2.
答案
①解:两边同时加5得,
-
1
3
x-5+5=4+5,
两边同时乘以-3得,
-
1
3
x×(-3)=9×(-3),
即x=-h7;

②解:两边同时加h得,
4x-h+h=h+h,
即4x=4,
两边同时除以4得,
4x÷4=4÷4,
即x=1.
①解:两边同时加5得,
-
1
3
x-5+5=4+5,
两边同时乘以-3得,
-
1
3
x×(-3)=9×(-3),
即x=-h7;

②解:两边同时加h得,
4x-h+h=h+h,
即4x=4,
两边同时除以4得,
4x÷4=4÷4,
即x=1.
考点梳理
等式的性质.
①先两边加上5,再两边都乘以-3即可得解;
②先两边加上2,再两边都除以4即可得解.
本题主要考查了等式的基本性质.
等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;
2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.
找相似题