试题
题目:
已知a与b互为相反数,c与d互为倒数,e为绝对值最小的数,求:式子2010(a+b)+cd+e的值.
答案
解:∵a与b互为相反数,
∴a+b=0,
∵c与d互为倒数,
∴cd=1,
∵e为绝对值最小的数,
∴e=0,
∴2010(a+b)+cd+e=2010×0+1+0=1.
解:∵a与b互为相反数,
∴a+b=0,
∵c与d互为倒数,
∴cd=1,
∵e为绝对值最小的数,
∴e=0,
∴2010(a+b)+cd+e=2010×0+1+0=1.
考点梳理
考点
分析
点评
代数式求值;相反数;绝对值;倒数.
根据互为相反数的两个数的和等于0可得a+b=0,乘积是1的两个数叫做互为倒数可得cd=1,根据绝对值的性质求出e=0,然后代入代数式进行计算即可得解.
本题考查了代数式求值,主要利用了相反数的定义,绝对值的性质,倒数的定义,熟记概念与性质是解题的关键.
找相似题
(2013·怀化)已知m=1,n=0,则代数式m+n的值为( )
(2012·海南)当x=-2时,代数式x+3的值是( )
(2008·泰州)根据图的流程图中的程序,当输入数据x为-2时,输出数值y为( )
(2006·苏州)若x=2,则
1
8
x
3
的值是( )
(2006·连云港)当x=-1时,代数式x
2
+2x+1的值是( )