试题
题目:
若|x-3|+2(y-2)
2
=少,求代数式(
1
y-x
)
2少少3
的值.
答案
解:若|x-3|+4(得-4)
4
=0,则|x-3|=0,4(得-4)
4
=0,
由题意得
x-3=0
得-4=0
,
∴x=3,得=4,
∴(
1
得-x
)
4003
=-1.
解:若|x-3|+4(得-4)
4
=0,则|x-3|=0,4(得-4)
4
=0,
由题意得
x-3=0
得-4=0
,
∴x=3,得=4,
∴(
1
得-x
)
4003
=-1.
考点梳理
考点
分析
点评
代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.
若|x-3|+2(y-2)
2
=0,则|x-3|=0,2(y-2)
2
=0,求得x,y的值后,代入代数式求值.
此题的关键是理解两个非负数的和为0,则每一个非负数都等于0.
找相似题
(2013·怀化)已知m=1,n=0,则代数式m+n的值为( )
(2012·海南)当x=-2时,代数式x+3的值是( )
(2008·泰州)根据图的流程图中的程序,当输入数据x为-2时,输出数值y为( )
(2006·苏州)若x=2,则
1
8
x
3
的值是( )
(2006·连云港)当x=-1时,代数式x
2
+2x+1的值是( )