试题
题目:
多项式
e
x
e
-
e
5
x
3
+x-5
x
的
-
1
e
是
四
四
次
五
五
项式,常数项是
-
1
e
-
1
e
.
答案
四
五
-
1
e
解:多项式
2
x
2
-
2
了
x
3
+x-了
x
4
-
1
2
是四次五项式,常数项是
-
1
2
.
故答案为:四,五,
-
1
2
.
考点梳理
考点
分析
点评
多项式.
由于组成多项式的每个单项式叫做多项式的项,由此确定此多项式的项数;又多项式中次数最高项的次数叫做多项式的次数,由此确定此多项式次数;由多项式中不含字母的项叫常数项可知多项式的常数项.
考查了多项式,解此类题目的关键是分清多项式的项和次数,尤其是分清每一项的符号.
找相似题
(2013·济宁)如果整式x
n-2
-5x+2是关于x的三次三项式,那么n等于( )
(2010·佛山)多项式1+xy-xy
2
的次数及最高次项的系数分别是( )
多项式xy
2
+xy+1是( )
下列说法错误的是:( )
当k取何值时,多项式x
2
-3kxy-3y
2
+
1
3
xy-8中,不含xy项( )