试题

题目:
(2013·本溪二模)先化简,再求值:(
3x+2
x2-1
)+
x
x+1
,其中x=(-1)2012+tan60°.
答案
解:原式=
3x+2
(x+1)(x-1)
+
x(x-1)
(x+1)(x-1)

=
3x+2+x2-x
(x+1)(x-1)

=
2x+2+x2
(x+1)(x-1)

=
(x+1)2+1
(x+1)(x-1)

∵x=(-1)2012+tan60°=1+
3

∴原式=
(1+
3
+1)2+1
(1+
3
+1)(1+
3
-1)

=
(2+
3
)
2
+1
(2+
3
3

=
4+3+4
3
+1
2
3
+3

=
4(2+
3
)
2
3
+3

=
4
3
3

解:原式=
3x+2
(x+1)(x-1)
+
x(x-1)
(x+1)(x-1)

=
3x+2+x2-x
(x+1)(x-1)

=
2x+2+x2
(x+1)(x-1)

=
(x+1)2+1
(x+1)(x-1)

∵x=(-1)2012+tan60°=1+
3

∴原式=
(1+
3
+1)2+1
(1+
3
+1)(1+
3
-1)

=
(2+
3
)
2
+1
(2+
3
3

=
4+3+4
3
+1
2
3
+3

=
4(2+
3
)
2
3
+3

=
4
3
3
考点梳理
分式的化简求值;特殊角的三角函数值.
先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
计算题.
找相似题