试题
题目:
(2005·陕西)已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
求证:(1)BC平分∠PBD;
(2)BC
2
=AB·BD.
答案
证明:(1)连接OC.(1分)
∵PD切⊙O于点C,
又∵BD⊥PD,
∴OC∥BD.
∴∠1=∠3.(2分)
又∵OC=OB,
∴∠2=∠3.(3分)
∴∠1=∠2,即BC平分∠PBD.(4分)
(2)连接AC.
∵AB是⊙O的直径,
∴∠ACB=90°.(5分)
又∵BD⊥PD,
∴∠ACB=∠CDB=90°(6分)
又∵∠1=∠2,
∴△ABC∽△CBD;(7分)
∴
AB
CB
=
BC
BD
,∴BC
2
=AB·BD.(8分)
证明:(1)连接OC.(1分)
∵PD切⊙O于点C,
又∵BD⊥PD,
∴OC∥BD.
∴∠1=∠3.(2分)
又∵OC=OB,
∴∠2=∠3.(3分)
∴∠1=∠2,即BC平分∠PBD.(4分)
(2)连接AC.
∵AB是⊙O的直径,
∴∠ACB=90°.(5分)
又∵BD⊥PD,
∴∠ACB=∠CDB=90°(6分)
又∵∠1=∠2,
∴△ABC∽△CBD;(7分)
∴
AB
CB
=
BC
BD
,∴BC
2
=AB·BD.(8分)
考点梳理
考点
分析
点评
专题
切线的性质;平行线的性质;角平分线的性质;圆周角定理;相似三角形的判定与性质.
(1)连接OC.可发现∠OCB和∠DBC同为∠DCB的余角,而∠OCB=∠OBC,由此可得∠OBC=∠DBC,即BC平分∠PBD;
(2)连接AC.证明△ABC∽△CBD即可.
此题综合考查了平行线、等腰三角形、相似三角形和圆周角的性质.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )