题目:

(2010·资阳)如图,在直角梯形ABCD中,已知AD∥BC,AB=3,AD=1,BC=6,∠A=∠B=90°.设动点P、Q、R在梯形的边上,始终构成以P为直角顶点的等腰直角三角形,且△PQR的一边与梯形ABCD的两底平行.
(1)当点P在AB边上时,在图中画出一个符合条件的△PQR (不必说明画法);
(2)当点P在BC边或CD边上时,求BP的长.
答案
解:(1)如图△PQR是符合条件的三角形.

(2)①当P在CD边上时,由题意,PR∥BC,设PR=x.可证四边形PRBQ是正方形,
∴PR=PQ=BQ=x.
过D点作DE∥AB,交BC于E,易证四边形ABED是矩形.
∴AD=BE=1,AB=DE=3.又 PQ∥DE,
∴△CPQ∽△CDE,∴
=.
∴
=,

∴x=
,即BP=
.
②当P在BC边上,依题意可知RQ∥BC.
过Q作QF⊥BC,易证△BRP≌△FQP,则PB=PF.
易证四边形BFQR是矩形,
设BP=x,则BP=BR=QF=PF=x,BF=RQ=2x.
∵QF∥DE,
∴△CQF∽△CDE,
∴
=,
∴
=,
∴x=
.
解:(1)如图△PQR是符合条件的三角形.

(2)①当P在CD边上时,由题意,PR∥BC,设PR=x.可证四边形PRBQ是正方形,
∴PR=PQ=BQ=x.
过D点作DE∥AB,交BC于E,易证四边形ABED是矩形.
∴AD=BE=1,AB=DE=3.又 PQ∥DE,
∴△CPQ∽△CDE,∴
=.
∴
=,

∴x=
,即BP=
.
②当P在BC边上,依题意可知RQ∥BC.
过Q作QF⊥BC,易证△BRP≌△FQP,则PB=PF.
易证四边形BFQR是矩形,
设BP=x,则BP=BR=QF=PF=x,BF=RQ=2x.
∵QF∥DE,
∴△CQF∽△CDE,
∴
=,
∴
=,
∴x=
.