试题
题目:
(2004·荆州)如图,正方形ABCD的边长为2cm,以B为圆心,BC长为半径画弧交对角线BD于E点,连接CE,P是CE上任意一点,PM⊥BC,PN⊥BD,垂足分别为M、N,则PM+PN的值为( )
A.
2
cm
B.1cm
C.
3
cm
D.2cm
答案
A
解:连接BP,作EH⊥BC于H点,
∵正方形ABCD的边长为2cm,BE=CE,
∴BE=CE=DC=2,DB=2
2
,
∵EH∥DC,
∴△BHE∽△BCD,
∴BE:BD=EH:CD,
∴EH=
2
,
∵S
△EBP
+S
△BPC
=S
△BEC
,
∴
BE·NP
2
+
BC·PM
2
=
BC·EH
2
,
∴PM+PN=
2
.
故选择A.
考点梳理
考点
分析
点评
相似三角形的判定与性质;三角形的面积;正方形的性质.
连接BP,做EH⊥BC于H点,根据题意可得BE=BC=2,EH∥DC,即可推出EH的长度,结合图形可知S
△EBP
+S
△BPC
=S
△BEC
,写出表达式,即可得PM+PN.
本题主要考查正方形的性质、三角形的面积公式、相似三角形的判定和性质,解题的关键△BHE∽△BCD、求出EH的长度.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )