试题
题目:
已知二次函数y=ax
2
+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b2-4ac<0 ⑤c<4b ④a+b>0,则其中正确结论的个数是( )
A.1个
B.2个
C.3个
D.4个
答案
B
解:∵抛物线开口相下,
∴a<0,
∵抛物线对称轴为直线x=-
b
2a
>0,
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵抛物线与x轴有两个交点,
∴b
2
-4ac>0,所以②错误;
∵对称轴为直线x=-
b
2a
=1,
∴b=-2a,抛物线与x轴另一交点坐标为(-1,0),
∴当x=-2时,y<0,即4a-2b+c<0,
∴-2b-2b+c<0,即c<4b,所以③正确;
∵b=-2a,
∴a+b=-a>0,所以④正确.
故选B.
考点梳理
考点
分析
点评
专题
二次函数图象与系数的关系.
根据抛物线开口方向得a<0,再根据对称轴得b>0,根据抛物线与y轴的交点在x轴上方得c>0,于是abc<0,所以可对①进行判断;
根据抛物线与x轴有两个交点可对②进行判断;
根据抛物线的对称轴为直线x=-
b
2a
=1,则b=-2a,抛物线与x轴另一交点坐标为(-1,0),所以当x=-2时,y<0,即4a-2b+c<0,然后把a=-
1
2
b代入得到c<4b,于是可对③进行判断;
根据b=-2a可得a+b=-a>0,则可对④进行判断.
本题考查了二次函数的图象与系数的关系:二次函数y=ax
2
+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-
b
2a
;抛物线与y轴的交点坐标;当b
2
-4ac>0,抛物线与x轴有两个交点.
数形结合.
找相似题
(2013·资阳)如图,抛物线y=ax
2
+bx+c(a≠0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是( )
(2013·漳州)二次函数y=ax
2
+bx+c(a≠0)的图象如图所示,下列结论正确的是( )
(2013·岳阳)二次函数y=ax
2
+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是( )
(2013·黔东南州)二次函数y=ax
2
+bx+c的图象如图所示,则下列结论正确的是( )
(2013·齐齐哈尔)已知二次函数y=ax
2
+bx+c(a≠0)的图象经过点(x
1
,0)、(2,0),且-2<x
1
<-1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b
2
>4ac;③2a+b+1<0;④2a+c>0.则其中正确结论的序号是( )