试题
题目:
阅读对话,解答问题.
(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树形图法或列表法写出(a,b)的所有取值;
(2)若小冬从小丽、小兵袋子中抽出的卡片上标有的数字之积为奇数,算小丽赢,否则算小兵赢,这样的取法合理吗?
答案
解:(1)(a,b)对应的表格为:
a
b
1
2
3
1
(1,1)
(1,2)
(1,3)
2
(2,1)
(2,2)
(2,3)
3
(3,1)
(3,2)
(3,3)
4
(4,1)
(4,2)
(4,3)
(2)根据已知得出:两数之积为奇数的个数为4个,则得到奇数的概率为:
1
3
,
故P
小兵
=
2
3
>P
小丽
=
1
3
,不合理.
解:(1)(a,b)对应的表格为:
a
b
1
2
3
1
(1,1)
(1,2)
(1,3)
2
(2,1)
(2,2)
(2,3)
3
(3,1)
(3,2)
(3,3)
4
(4,1)
(4,2)
(4,3)
(2)根据已知得出:两数之积为奇数的个数为4个,则得到奇数的概率为:
1
3
,
故P
小兵
=
2
3
>P
小丽
=
1
3
,不合理.
考点梳理
考点
分析
点评
游戏公平性;列表法与树状图法.
(1)根据题意,利用列表法求出所有的可能即可;
(2)利用(1)中表格中数据求出两人分别获胜的概率即可.
此题考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的易错点.
找相似题
小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是( )
现有游戏规则如下:第一个人先说“1”或“1、2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数,谁先抢到“38”,谁就得胜.在这个游戏中,若采取合理的策略,你认为( )
下列哪些事件是必然事件的个数有( )
(1)哈尔滨冬天会下雪
(2)中秋节(农历十月十五日)的晚上一定能看到月亮
(3)秋天的树叶一定是黄色的
(4)抛十次硬币五次正面,五次反面.
口袋里有相同的2个红球、4个白球和6个黑球,从口袋里摸出2个球,若两个都是红色,则甲胜;若两个都是黑球,则乙胜.谁获胜的概率大( )
小明用瓶盖设计了一个游戏:任意掷一个瓶盖;如果盖底着地,则甲胜;如果盖口着地,则乙胜.你认为这个游戏( )