试题
题目:
如图,两同心圆的圆心为O,大圆的弦AB切小圆于P,两圆的半径分别为2和1,若用阴影部分围成一个圆锥,则该圆锥的底面半径为
4
3
4
3
.
答案
4
3
解:连接OP,则OP⊥AB,AB=2AP,
∴AB=2AP=2×
2
2
-1
2
=2
3
,
∴sin∠AOP=
3
2
,
∴∠AOP=60°,
∴∠AOB=2∠AOP=120°,
∴优弧AB的长为
240π×2
180
=
8
3
π,
∴圆锥的底面半径为
8
3
π÷2π=
4
3
,
故答案为:
4
3
.
考点梳理
考点
分析
点评
圆锥的计算;勾股定理;垂径定理;切线的性质.
利用相应的三角函数可求得∠AOB的度数,进而可求优弧AB的长度,除以2π即为圆锥的底面半径.
本题综合考查了垂径定理,勾股定理,相应的三角函数,圆锥的弧长等于底面周长等知识点.
找相似题
(2013·遂宁)用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )
(2013·绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是( )
(2013·南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为( )
(2013·南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是( )
(2013·莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )