试题
题目:
(2006·成都二模)正三角形外接圆的面积是它内切圆面积的
4
4
倍.
答案
4
解:△ABC为等边三角形,AD为角平分线,⊙O为△ABC的内切圆,连OB,如图,
∵△ABC为等边三角形,⊙O为△ABC的内切圆,
∴点O为△ABC的外心,AD⊥BC,
∴∠OBC=30°,
在Rt△OBD中,OD=
1
2
OB,
∴△ABC的外接圆的面积与其内切圆的面积之比=OB
2
:OD
2
=4:1.
故答案为4.
考点梳理
考点
分析
点评
专题
正多边形和圆.
△ABC为等边三角形,AD为高,⊙O为△ABC的内切圆,连OB,根据正多边有内切圆和外接圆,并且它们是同心圆得到点O为△ABC的外心,根据等边三角形的性质得到AD⊥BC,易得∠OBC=30°,在Rt△OBD中,利用含30°的直角三角形三边的关系得到OD=
1
2
OB,然后根据圆的面积公式即可得到△ABC的外接圆的面积与其内切圆的面积之比.
本题考查了正多边形与圆:正多边有内切圆和外接圆,并且它们是同心圆.也考查了等边三角形的性质.
计算题.
找相似题
(2013·自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是( )
(2013·绵阳)如图,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为( )
(2010·台湾)如图,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10,则正八边形ABCDEFGH的面积为何( )
(2010·长沙)如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )
(2009·肇庆)如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于( )