试题
题目:
(2004·深圳)圆内接四边形ABCD中,AC平分∠BAD,EF切圆于C,若∠BCD=120°,则∠BCE=( )
A.30°
B.40°
C.45°
D.60°
答案
A
解:∵四边形ABCD内接于⊙O,
∴∠BAD+∠BCD=180°,
∴∠BAD=180°-120°=60°,
∵AC平分∠BAD,
∴∠BAC=
1
2
∠BAD=30°,
∵EF切⊙O于C,
∴∠BCE=∠BAC=30°.故选A.
考点梳理
考点
分析
点评
专题
圆周角定理;圆内接四边形的性质;切线的性质;弦切角定理.
由弦切角定理可得:∠BCE=∠BAC;因此欲求∠BCE,必先求出∠BAC的度数.已知∠BCD=120°,由圆内接四边形的对角互补,可得出∠BAD=60°,而AC平分∠BAD,即可求出∠BAC的度数.
本题主要考查弦切角定理和圆内接四边形的性质,解题的关键是得出∠BAD=60°.
压轴题.
找相似题
(2010·台湾)如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则
CD
的度数为何( )
(2009·伊春)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于E,连接AD,则下列结论正确的个数是( )
①AD⊥BC;②∠EDA=∠B;③OA=
1
2
AC;④DE是⊙O的切线.
(2005·天津)如图,直线AD与△ABC的外接圆相切于点A,若∠B=60°,则∠CAD等于( )
(2004·威海)如图,AB为⊙O的直径,C、D为⊙O上的点,直线MN切⊙O于C点,图中与∠BCN互余的角有( )
(2009·花都区二模)如图,AB是⊙O的直径,DE为⊙O的切线,切点为B,点C在⊙O上,若∠CBE=40°,则∠A的度数为( )