试题
题目:
如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,如果AB=8cm,小圆半径为3cm,那么大圆半径为
5
5
cm.
答案
5
解:如图:
连接OA,OP,
∵AB是大⊙O的切线,
∴OP⊥AB,
且OP=3,AP=4,
在Rt△OAP中,OA=
AP
2
+
OP
2
=
9+16
=5.
∴大圆的半径是5cm.
故答案为:5.
考点梳理
考点
分析
点评
专题
切线的性质;勾股定理;垂径定理.
连接OP,OA,根据切线的性质和垂径定理得到直角三角形OAP,在直角三角形中用勾股定理求出大圆的半径.
本题考查的是切线的性质,利用切线的性质得到直角三角形,在直角三角形中用勾股定理计算求出大圆的半径.
计算题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )