答案
解:∵PA为⊙O的切线,A为切点,
∴OA⊥PA,
∴∠OAP=90°;
在Rt△OAP中,
∵sin∠OPA=
=
=
,
∴∠OPA=30°,
∴∠AOP=90°-∠OPA=90°-30°=60°;
在△OAB中,
∵∠AOP=60°,OA=OB,
∴∠OAB=60°,
∴∠BAP=∠OAP-∠OAB=90°-60°=30°.
解:∵PA为⊙O的切线,A为切点,
∴OA⊥PA,
∴∠OAP=90°;
在Rt△OAP中,
∵sin∠OPA=
=
=
,
∴∠OPA=30°,
∴∠AOP=90°-∠OPA=90°-30°=60°;
在△OAB中,
∵∠AOP=60°,OA=OB,
∴∠OAB=60°,
∴∠BAP=∠OAP-∠OAB=90°-60°=30°.