试题

题目:
青果学院(2012·谷城县模拟)如图,PA、PB是⊙O 的切线,切点分别是A、B,点C是⊙O上异与点A、B的点,如果∠P=60°,那么∠ACB等于
60°或120°
60°或120°

答案
60°或120°

青果学院解:(1)如图(1),连接OA、OB.
在四边形PAOB中,由于PA、PB分别切⊙O于点A、B,
则∠OAP=∠OBP=90°;
由四边形的内角和定理,知
∠APB+∠AOB=180°;
又∠APB=60°,
∴∠AOB=120°;
又∵∠ACB=
1
2
∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠ACB=60°;

青果学院(2)如图(2),连接OA、OB,作圆周角∠ADB.
在四边形PAOB中,由于PA、PB分别切⊙O于点A、B,
则∠OAP=∠OBP=90°;
由四边形的内角和定理,知
∠APB+∠AOB=180°;
又∠APB=60°,
∴∠AOB=120°;
∴∠ADB=
1
2
∠AOB=60°,
∴∠ACB=180°-∠ADB=120°;
故答案为:60°或120°.
考点梳理
切线的性质.
分两种情况:(1)当C在优弧AB上;(2)当C在劣弧AB上;连接OA、OB,在四边形PAOB中,∠OAP=∠OBP=90°,由内角和求得∠AOB的大小,然后根据圆周角定理∠AOB=2∠ACB=120°.
本题考查了切线的性质及圆周角定理及多边形的内角和定理.解答此题时,采用了“分类讨论”数学思想,避免了漏解的现象.
找相似题