试题
题目:
(2008·宣武区二模)如图,已知点O为Rt△ABC斜边AB上一点,以O为圆心,OA为半径的圆与BC相切于点D,与AB相交于点E,与AC相交于点F.试判断AD是否平分∠BAC.并说明理由.
答案
解:AD平分∠BAC.
证明如下:连接OD.∵BC切⊙O于D,
∴OD⊥BC.
∵△ABC为直角三角形,且∠C=90°,
∴AC⊥BC.∴OD∥AC,∴∠1=∠2,
又∵OA=OD,∴∠3=∠2,
∴∠1=∠3.故AD平分∠BAC.
解:AD平分∠BAC.
证明如下:连接OD.∵BC切⊙O于D,
∴OD⊥BC.
∵△ABC为直角三角形,且∠C=90°,
∴AC⊥BC.∴OD∥AC,∴∠1=∠2,
又∵OA=OD,∴∠3=∠2,
∴∠1=∠3.故AD平分∠BAC.
考点梳理
考点
分析
点评
专题
切线的性质.
连接OD.根据切线的性质知OD⊥BC;然后根据已知条件“点O为Rt△ABC斜边AB上一点”推知AC⊥BC,所有OD∥AC;最后根据平行线的性质以及圆上的点到圆心的距离相等来推知∠1=∠3.
本题考查了切线的性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
证明题.
找相似题
(2013·重庆) 如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为( )
(2012·黄石)如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
(2012·恩施州)如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( )
(2011·眉山)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,则∠BOC的度数为( )
(2011·兰州)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于( )