切线的性质;含30度角的直角三角形;圆周角定理.
(1)由AB为圆O的直径,根据直径所对的圆周角为直角得到∠C=90°,又∠ABC=60°得到∠A=30°,根据30°角所对的直角边等于斜边的一半,由BC求出AB的长,即为圆O的直径;
(2)DB=OB时,CD与圆O相切,理由为:由OC=OB得到△OCB为等腰三角形,又∠ABC为60°,故△OCB为等边三角形,进而得到CB=OB=OC,而OB=BD,故CB=OB=BD,根据一边上的中线等于这边的一半,得到这边所对的角为直角,即∠OCD为直角,故DC与圆O相切.
此题综合考查了切线的性质,圆周角定理,其中证明切线的方法有:1、有点连接此点与半径,证明夹角为直角;2、无点作垂线,证明垂线段等于半径.