题目:

已知:⊙O是△ABC的外接圆,点M为⊙O上一点.
(1)如图,若△ABC为等边三角形,BM=1,CM=2,求AM的长;
(2)若△ABC为等腰直角三角形,∠BAC=90°,BM=a,CM=b(其中b>a),直接写出AM的长(用含有a,b的代数式表示).
答案
(1)解:延长MB至点E,使BE=MC,连接AE,

∵△ABC是等边三角形,
∴AB=AC,
∵四边形ABMC是⊙O的内接四边形,
∴∠ABE=∠ACM,
在△AEB和△AMC中
,
∴△AEB≌△AMC,
∴∠AEB=∠AMC,
∵∠AMC=∠ABC(在同圆中,同弧所对的圆周角相等),
∴∠AEB=∠ABC,
∵∠AME=∠ACB(在同圆中,同弧所对的圆周角相等),
又∵∠ABC=∠ACB=60°,
∴∠AEB=∠AME=60°,
∴△AEM是等边三角形,
∴AM=ME=MB+BE,
∵BE=MC,
∴MB+MC=MA=1+2=3.
即AM的长是3.
(2)解:分为两种情况:①如图,AM=
=
(a+b),
理由是:延长MB至点E,使BE=MC,连AE,

由(1)知:∠ABE=∠ACM,
在△ABE和△ACM中
,
∴△ABE≌△ACM,
∴AM=AE,∠E=∠AMC,
∵∠AMC=∠ABC=45°,∠AMB=∠ACB=45°,
∴∠E=∠AMB=45°,
∴∠EAM=90°,
在△EAM中,ME=MB+BE=MB+CM=a+b,AE=AM,
由勾股定理得:AM=
=
(a+b),
即AM=
=
(a+b).
②如图,

在CM上截取CN=BM,连接AN,
∵∠ABM所对的弧和∠ACN所对的弧都是弧AM,
∴∠ABM=∠ACN,
在△ABM和△ACN中
,
∴△ABM≌△ACN(SAS),
∴AM=AN,∠BAM=∠CAN,
∵∠BAC=∠BAN+∠CAN=90°,
∴∠BAN+∠BAM=90°,
∴∠MAN=90°,
则△MAN是等腰直角三角形,
∵MN=CM-CN=CM-BM=b-a,
由勾股定理得:AM=AN=
=
(b-a),
即AM=
(b-a).
即AM的长是
(a+b)或
(b-a).
(1)解:延长MB至点E,使BE=MC,连接AE,

∵△ABC是等边三角形,
∴AB=AC,
∵四边形ABMC是⊙O的内接四边形,
∴∠ABE=∠ACM,
在△AEB和△AMC中
,
∴△AEB≌△AMC,
∴∠AEB=∠AMC,
∵∠AMC=∠ABC(在同圆中,同弧所对的圆周角相等),
∴∠AEB=∠ABC,
∵∠AME=∠ACB(在同圆中,同弧所对的圆周角相等),
又∵∠ABC=∠ACB=60°,
∴∠AEB=∠AME=60°,
∴△AEM是等边三角形,
∴AM=ME=MB+BE,
∵BE=MC,
∴MB+MC=MA=1+2=3.
即AM的长是3.
(2)解:分为两种情况:①如图,AM=
=
(a+b),
理由是:延长MB至点E,使BE=MC,连AE,

由(1)知:∠ABE=∠ACM,
在△ABE和△ACM中
,
∴△ABE≌△ACM,
∴AM=AE,∠E=∠AMC,
∵∠AMC=∠ABC=45°,∠AMB=∠ACB=45°,
∴∠E=∠AMB=45°,
∴∠EAM=90°,
在△EAM中,ME=MB+BE=MB+CM=a+b,AE=AM,
由勾股定理得:AM=
=
(a+b),
即AM=
=
(a+b).
②如图,

在CM上截取CN=BM,连接AN,
∵∠ABM所对的弧和∠ACN所对的弧都是弧AM,
∴∠ABM=∠ACN,
在△ABM和△ACN中
,
∴△ABM≌△ACN(SAS),
∴AM=AN,∠BAM=∠CAN,
∵∠BAC=∠BAN+∠CAN=90°,
∴∠BAN+∠BAM=90°,
∴∠MAN=90°,
则△MAN是等腰直角三角形,
∵MN=CM-CN=CM-BM=b-a,
由勾股定理得:AM=AN=
=
(b-a),
即AM=
(b-a).
即AM的长是
(a+b)或
(b-a).