试题

题目:
青果学院如图,△ABC为锐角三角形,△ABC内接于圆O,∠BAC=60°,H是△ABC的垂心,BD是⊙O的直径.
求证:AH=
1
2
BD.
答案
青果学院证明:
连接AD,CD,CH,
∵BD是⊙O直径,
∴∠BAD=∠BCD=90°,
又∠BAC=60°,
∴∠CAD=30°,∠DBC=∠CAD=30°,
在Rt△BCD中,CD=
1
2
BD,H是△ABC的垂心,AH⊥BC,CH⊥AB,
又DC⊥BC,DA⊥AB,
∴四边形AHCD为平行四边形,
∵AH=CD,
∴AH=
1
2
BD.
青果学院证明:
连接AD,CD,CH,
∵BD是⊙O直径,
∴∠BAD=∠BCD=90°,
又∠BAC=60°,
∴∠CAD=30°,∠DBC=∠CAD=30°,
在Rt△BCD中,CD=
1
2
BD,H是△ABC的垂心,AH⊥BC,CH⊥AB,
又DC⊥BC,DA⊥AB,
∴四边形AHCD为平行四边形,
∵AH=CD,
∴AH=
1
2
BD.
考点梳理
三角形的外接圆与外心.
易得△BCD为含30°的直角三角形,则CD=
1
2
BD,利用H是垂心及直径所对的圆周角是直角可得四边形AHCD是平行四边形,则AH=CD,可得所证.
本题考查了与圆有关的证明,得到四边形AHCD的形状是解决本题的突破点,用到的知识点为:同弧所对的圆周角等于圆心角的一半;两组对边分别平行的四边形是平行四边形.
证明题.
找相似题