三角形的外接圆与外心;等边三角形的性质.
连BO交MN于F,交AC于E;由△ABC为等边三角形,MN∥AC得△BMN为等边三角形,而O为△BMN的外心,根据等边三角形的性质得到BF⊥MN,且O为△BMN的内心,则BO:OF=2,易得BE⊥AC,BO:BF=2:3①;再利用平行线分线段成比例定理得BF:BE=MB:BA=3:5,利用比例性质得BF:BE=3:5②,由①②得BO:BE=2:5,则OE:BE=3:5,然后根据三角形的面积公式和S△OAD:△ABC=1:5即可计算出AD与AC的比.
本题考查了三角形外心的性质:三角形的外心到三角形三个顶点的距离相等.也考查了等边三角形的性质、平行线分线段成比例定理以及比例的性质.
计算题.