试题
题目:
只用圆规度量∠XOY的度数,方法是:以顶点O为圆心任意画一个圆,与角的两边分别交于点A,B(如图),在这个圆上顺次截取
AB
=
BC
=
CD
=
DE
=
EF
=…这样绕着圆一周周地截下去,直到绕第n周时,终于使第m次截得的弧的末端恰好与点A重合(m>n),那么∠XOY的度数等于
n
m
×360°
n
m
×360°
.
答案
n
m
×360°
解:设∠XOY的度数为x,则mx=n×360°,所以x=
n
m
×360°
故答案为:
n
m
×360°
.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系.
先设∠XOY的度数为x,则到第m次绕过的度数为mx,因为一周为360°,所以由此可建立m、n、x的关系式,用m、n表示出x的值即可.
本题考查的是圆心角、弧、弦的关系,解答此题的关键是根据一周为360°建立起关于n、m、x的方程.
探究型.
找相似题
(2013·内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为( )
(2010·烟台)如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C,⑤弧AE=
1
2
弧AEB,正确结论的个数是( )
(2008·庆阳)如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是( )
(2006·遂宁)如图,已知AB是⊙O的直径,
BC
=
CD
=
DE
.∠BOC=40°,那么∠AOE=( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )